3.74 \(\int \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x) \, dx\)

Optimal. Leaf size=110 \[ \frac{3 \sin (a+b x) \sqrt{\sin (2 a+2 b x)}}{8 b}-\frac{\sin ^{\frac{3}{2}}(2 a+2 b x) \cos (a+b x)}{4 b}-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{16 b}-\frac{3 \log \left (\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}+\cos (a+b x)\right )}{16 b} \]

[Out]

(-3*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/(16*b) - (3*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]]
)/(16*b) + (3*Sin[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(8*b) - (Cos[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/(4*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0675042, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {4302, 4301, 4306} \[ \frac{3 \sin (a+b x) \sqrt{\sin (2 a+2 b x)}}{8 b}-\frac{\sin ^{\frac{3}{2}}(2 a+2 b x) \cos (a+b x)}{4 b}-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{16 b}-\frac{3 \log \left (\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}+\cos (a+b x)\right )}{16 b} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]*Sin[2*a + 2*b*x]^(3/2),x]

[Out]

(-3*ArcSin[Cos[a + b*x] - Sin[a + b*x]])/(16*b) - (3*Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*a + 2*b*x]]]
)/(16*b) + (3*Sin[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(8*b) - (Cos[a + b*x]*Sin[2*a + 2*b*x]^(3/2))/(4*b)

Rule 4302

Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-2*Cos[a + b*x]*(g*Sin[c
+ d*x])^p)/(d*(2*p + 1)), x] + Dist[(2*p*g)/(2*p + 1), Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fr
eeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4301

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(2*Sin[a + b*x]*(g*Sin[c +
 d*x])^p)/(d*(2*p + 1)), x] + Dist[(2*p*g)/(2*p + 1), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]

Rule 4306

Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> -Simp[ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]

Rubi steps

\begin{align*} \int \sin (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x) \, dx &=-\frac{\cos (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{4 b}+\frac{3}{4} \int \cos (a+b x) \sqrt{\sin (2 a+2 b x)} \, dx\\ &=\frac{3 \sin (a+b x) \sqrt{\sin (2 a+2 b x)}}{8 b}-\frac{\cos (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{4 b}+\frac{3}{8} \int \frac{\sin (a+b x)}{\sqrt{\sin (2 a+2 b x)}} \, dx\\ &=-\frac{3 \sin ^{-1}(\cos (a+b x)-\sin (a+b x))}{16 b}-\frac{3 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt{\sin (2 a+2 b x)}\right )}{16 b}+\frac{3 \sin (a+b x) \sqrt{\sin (2 a+2 b x)}}{8 b}-\frac{\cos (a+b x) \sin ^{\frac{3}{2}}(2 a+2 b x)}{4 b}\\ \end{align*}

Mathematica [A]  time = 0.194416, size = 86, normalized size = 0.78 \[ \frac{2 \sqrt{\sin (2 (a+b x))} (2 \sin (a+b x)-\sin (3 (a+b x)))-3 \left (\sin ^{-1}(\cos (a+b x)-\sin (a+b x))+\log \left (\sin (a+b x)+\sqrt{\sin (2 (a+b x))}+\cos (a+b x)\right )\right )}{16 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]*Sin[2*a + 2*b*x]^(3/2),x]

[Out]

(-3*(ArcSin[Cos[a + b*x] - Sin[a + b*x]] + Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]) + 2*Sqrt
[Sin[2*(a + b*x)]]*(2*Sin[a + b*x] - Sin[3*(a + b*x)]))/(16*b)

________________________________________________________________________________________

Maple [B]  time = 15.386, size = 65166864, normalized size = 592426. \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)*sin(2*b*x+2*a)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sin \left (2 \, b x + 2 \, a\right )^{\frac{3}{2}} \sin \left (b x + a\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(2*b*x+2*a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(2*b*x + 2*a)^(3/2)*sin(b*x + a), x)

________________________________________________________________________________________

Fricas [B]  time = 0.555751, size = 771, normalized size = 7.01 \begin{align*} -\frac{8 \, \sqrt{2}{\left (4 \, \cos \left (b x + a\right )^{2} - 3\right )} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} \sin \left (b x + a\right ) - 6 \, \arctan \left (-\frac{\sqrt{2} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )}{\left (\cos \left (b x + a\right ) - \sin \left (b x + a\right )\right )} + \cos \left (b x + a\right ) \sin \left (b x + a\right )}{\cos \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) - 1}\right ) + 6 \, \arctan \left (-\frac{2 \, \sqrt{2} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} - \cos \left (b x + a\right ) - \sin \left (b x + a\right )}{\cos \left (b x + a\right ) - \sin \left (b x + a\right )}\right ) - 3 \, \log \left (-32 \, \cos \left (b x + a\right )^{4} + 4 \, \sqrt{2}{\left (4 \, \cos \left (b x + a\right )^{3} -{\left (4 \, \cos \left (b x + a\right )^{2} + 1\right )} \sin \left (b x + a\right ) - 5 \, \cos \left (b x + a\right )\right )} \sqrt{\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, \cos \left (b x + a\right )^{2} + 16 \, \cos \left (b x + a\right ) \sin \left (b x + a\right ) + 1\right )}{64 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(2*b*x+2*a)^(3/2),x, algorithm="fricas")

[Out]

-1/64*(8*sqrt(2)*(4*cos(b*x + a)^2 - 3)*sqrt(cos(b*x + a)*sin(b*x + a))*sin(b*x + a) - 6*arctan(-(sqrt(2)*sqrt
(cos(b*x + a)*sin(b*x + a))*(cos(b*x + a) - sin(b*x + a)) + cos(b*x + a)*sin(b*x + a))/(cos(b*x + a)^2 + 2*cos
(b*x + a)*sin(b*x + a) - 1)) + 6*arctan(-(2*sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a)) - cos(b*x + a) - sin(b*x +
 a))/(cos(b*x + a) - sin(b*x + a))) - 3*log(-32*cos(b*x + a)^4 + 4*sqrt(2)*(4*cos(b*x + a)^3 - (4*cos(b*x + a)
^2 + 1)*sin(b*x + a) - 5*cos(b*x + a))*sqrt(cos(b*x + a)*sin(b*x + a)) + 32*cos(b*x + a)^2 + 16*cos(b*x + a)*s
in(b*x + a) + 1))/b

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(2*b*x+2*a)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sin \left (2 \, b x + 2 \, a\right )^{\frac{3}{2}} \sin \left (b x + a\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(2*b*x+2*a)^(3/2),x, algorithm="giac")

[Out]

integrate(sin(2*b*x + 2*a)^(3/2)*sin(b*x + a), x)